

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUG 2011
2. REPORT TYPE

Journal Article (Post Print)
3. DATES COVERED (From - To)

SEP 2009 – JAN 2011
4. TITLE AND SUBTITLE

CRUMPLE ZONES: ABSORBING ATTACK EFFECTS BEFORE THEY
BECOME A PROBLEM

5a. CONTRACT NUMBER
FA8750-09-C-0216

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

(AFRL) Asher Sinclair, (BBN) Joseph P. Loyall, Michael Atighetchi, Partha
Pal, Aaron Adler, Jonathan Webb, Andrew Gronosky, Fusun Yaman
(Adventium Labs) Charles Payne.

5d. PROJECT NUMBER
558S

5e. TASK NUMBER
AP

5f. WORK UNIT NUMBER
SV

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

BBN Technologies; 10Moulton Street, Cambridge, MA 02138
Adventium Labs; 111 Third Avenue South, Suite 100, Minneapolis, MN 55401

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2011-29

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA #: 88ABW-2011-0352
DATE CLEARED: 27 JAN 2011
13. SUPPLEMENTARY NOTES
Publication in CrossTalk, The Journal of Defense Software Engineering March/April 2011 Vol. 24 No. 2 pp 4 -11. One or more of
the authors is a U.S. Government employee working within the scope of their Government job; therefore, the U.S. Government is
joint owner of the work and has the right to copy, distribute, and use the work.

14. ABSTRACT
A specific and currently relevant issue motivating the notion of ruggedized software is the confluence of the threat of cyber attacks
and our increased dependence on software systems in enterprise as well as tactical situations. Software services that are essential for
mission success must not only withstand normal wear and tear, stresses and accidental failures, they also much endure the stresses
and failures caused by malicious activities and continue to remain usable. The Crumple Zone (CZ), a software shock absorber that
absorbs attack effects before they cause significant system failures, is an architectural construct that we have developed and are
maturing iteratively. We argue that the CZ is an important building block for constructing ruggedized software for supporting
network-centric operations. In this paper we discuss the CZ in the context of Service-Oriented Architecture (SOA) and describe a
configuration that has been realized and demonstrated.

15. SUBJECT TERMS
Crumple Zone, Service-Oriented Architecture (SOA), Cyber Attacks, SOA Survivability, Secure SOA

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF RESPONSIBLE PERSON
ASHER D. SINCLAIR

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

RUGGED SOFTWARE

4 CrossTalk—March/April 2011

1. Introduction
A higher level of structural and operational endurance and

ruggedness can be achieved in software systems by strategi-
cally introducing CZs in the system architecture. Analogous to
the crumple zone in an automobile, a CZ stands before critical
components and “absorbs” the effects of attacks by localizing or
eliminating the damage they can cause and leaving the critical
components intact and unaffected. The concept of software CZ
is broadly applicable; in this paper we discuss CZs for SOA.

SOA is an architecture paradigm gaining popularity in military
and civilian information systems, many of which play important
roles in national security. Mission critical systems face a highly
contested and hostile environment in real-world operations, and
must endure and withstand malicious attacks. Potential threats
against critical SOA-based systems range from automated
network worms targeting SOA platform and supporting services
to individual vandals to well-motivated and expert foreign intel-
ligence apparatus that aim to subvert operations in the DoD en-
terprise and critical missions. The adversary objective may range
from denying access to the system, to using the system without

authorization, to tampering with or fabricating data in storage or
in transit. But all indications, including our own assessment [1],
point to serious lapses in the state of the art in SOA security. As
a technology, SOA is still maturing and various aspects of SOA,
including security features, are still being standardized. Further-
more, available SOA infrastructure and platforms do not always
implement all of the available and specified standards. The com-
plexity of SOA platforms combined with their rapid evolution can
lead to implementers under-using or misusing available security
features due to lack of expertise. Security of SOA systems is
often limited to perimeter and network level [2] security.

Some of the very features that make SOA appealing, like
loose coupling, dynamism, and composition-oriented system
construction, make securing service-based systems more com-
plicated. These features ease the development of systems, but
also introduce additional vulnerabilities and points of entry than
in self-contained, static, or stove-piped systems. In SOA, ser-
vices are advertised and are looked up by potential users, many
of which might not have the proper authorization to access or
use the requested services. It is difficult to predict at design time
exactly which actors will attempt to consume a given service
and whether they will be authorized to do so. There are various
system boundaries with a trust differential—one side is more
trustworthy than the other side. Network and perimeter security
only reinforce the “crunchy on the outside, chewy inside” view
of software systems, and is utterly insufficient for developing
rugged SOA systems.

Figure 1: Architectural Elements of the CZ

Absorbing Attack Effects Before
They Become a Problem

Crumple Zones

Michael Atighetchi, Raytheon BBN Technologies
Partha Pal, Raytheon BBN Technologies
Aaron Adler, Raytheon BBN Technologies
Andrew Gronosky, Raytheon BBN Technologies
Fusun Yaman, Raytheon BBN Technologies
Jonathan Webb, Raytheon BBN Technologies
Joe Loyall, Raytheon BBN Technologies
Asher Sinclair, US Air Force Research Laboratory
Charles Payne, Adventium Labs

Abstract. A specific and currently relevant issue motivating the notion
of ruggedized software is the confluence of the threat of cyber attacks
and our increased dependence on software systems in enterprise as
well as tactical situations. Software services that are essential for mission
success must not only withstand normal wear and tear, stresses and ac-
cidental failures, they also must endure the stresses and failures caused
by malicious activities and continue to remain usable. The Crumple Zone
(CZ), a software shock absorber that absorbs attack effects before
they cause significant system failures, is an architectural construct that
we have developed and are maturing iteratively. We argue that the CZ
is an important building block for constructing ruggedized software for
supporting network-centric operations. In this paper we discuss the CZ
in the context of Service-Oriented Architecture (SOA) and describe a
configuration that has been realized and demonstrated.

We argue that CZs can absorb attacks and minimize dam-
age. CZs can be deployed at any trust boundary in the system.
One key place we have experimented with and will describe in
this paper is in the DMZ between the services enclave and the
public network from which clients access the services.

The rest of the paper is organized as follows. Section 2
provides an overview of the CZ architecture. Sections 3-7 de-
scribe various key features of the CZ and the components and
mechanisms responsible for them. Section 8 describes Related
Work, Section 9 provides performance metrics and a cost/ben-
efit analysis. Section 10 concludes the paper.

1

RUGGED SOFTWARE

CrossTalk—March/April 2011 5

2. CZ Architecture
The CZ is, in basic terms, a layer of intelligent service prox-

ies that work together to present a high barrier to entry to the
adversary, to increase the chance of detection of malicious
activities, and to contain and recover from failures and unde-
sired conditions caused by malicious attacks. These proxies
collectively implement the service’s consumer-facing application
programming interface. Different proxies help contain malicious
activity by applying security checks and controls, then approv-
ing data for release if it passes those checks. A key principle of
the CZ’s design is that only data that has been inspected and
approved by one or more proxies is passed along to the service.
Because the CZ inspects and processes untrusted data, it is
expected to fail occasionally. Automatic monitoring and re-start
of the proxies inside the CZ is another key design feature.

Effectiveness of the CZ depends on three requirements:
•	The CZ must be non-bypassable. All consumer requests to

	 the service must be mediated through the CZ.
• The CZ must cover both known and unknown attacks.

	 It should be configurable so defenses can be tailored to 	
	 the system’s operational requirements and the potential
	 threat environment.

• The CZ must preserve the integrity of data that flows
	 through it to prevent man-in-the-middle scenarios run by
	 corrupted CZ components.

To meet the first requirement, making the CZ non-bypassable,
conventional network level protections such as firewalls and
routers can be used. To make it difficult for adversaries to
discover and access protected services, CZ presents a very
small exploitable surface to untrusted service consumers. This
is accomplished by placing the CZ behind a firewall that uses
single packet authorization (SPA). On the CZ’s side of the fire-
wall, termination proxies (TPs) are used as the entry point for all
incoming client connections.

The second requirement, varied and configurable defenses,
is achieved through a set of proxies that implement specific
checks and are organized in a mechanism proxy cloud (MPC).
The MPC monitors observable behavior of requests. We have
implemented proxies that check assertions on application data,
e.g., by checking serialization fields, as well as canary proxies
that consume application data and thereby absorb attacks, e.g.,
by crashing or getting corrupted.

The third requirement, preserving data integrity within the
CZ, is achieved by service layer virtual private groups (slVPG).
The Splitter component replicates SSL streams between clients
and TPs to the MPC without breaking cryptographic envelopes.
Key management components that are also part of the slVPG
selectively share keys from the TPs to the MPC so that the new
streams can be decrypted for inspection.

3. SPA
The first layer of defense an attacker coming from the outside

needs to overcome is the CZ’s firewall. In addition to standard
restrictions on open ports and IP ranges, we use SPA [3] to
implement a least-privilege policy that allows access to listening
ports only to authenticated clients.

Figure 2 illustrates the general concept behind SPA using
a client (on the left) trying to access the service (on the right)
through the firewall (in the middle). The firewall starts out by
blocking all traffic to the service. A legitimate client starts the
interaction sequence (in step 1) by sending a cryptographic-
based credential that is encoded within a single packet to the
firewall. After verifying client identity and authorizing the client’s
connection request, the SPA server side component grants
the client the right to establish a single TCP connection (for a
limited amount of time) by adding specific firewall rules (step 2).
Finally, the client establishes a normal TCP connection in step 3.
A client without the proper credential is denied access.

SPA limits exposure of the protected enclave to port scans,
remote OS fingerprinting, and low-level network stack exploits
(such as TCP connection flooding). Port scan or OS finger-
printing attempts for reconnaissance will return no informa-
tion unless the adversary has stolen or forged cryptographic
credentials.

Figure 2: SPA

4. TP
TPs are advertised as service endpoints for the client, while

the actual service is accessible only from the TP. The client be-
lieves it is connecting directly to the service, but the TP provides
a barrier between the service and the client. The TP escrows
client-server data until it is analyzed and determined to be safe
to release.

One key design decision for constructing the TP was to keep
its logic minimal and therefore making it less prone to exploits.
For that reason, the TP does not itself analyze any client data
because the analysis process might introduce corruption or
crash faults. Instead, data analysis is performed in the MPC (see
Section 5). If traffic passes all checks, the MPC sends autho-
rization messages to the TP stating how many bytes of client
data have been approved for release. The TP requires active
approval of client data by the MPC within a certain amount of
time. If the MPC detects anything wrong with the data or if the
MPC fails to send a timely approval message, the connection to
the client is closed by the TP and the escrowed data is dis-
carded. Alternatively, when the MPC approves a certain number
of bytes for release, the TP releases that amount of data from

2

6 CrossTalk—March/April 2011

RUGGED SOFTWARE

escrow and sends it to the service. One key benefit of the split
check-escrow model is that corrupted nodes in the MPC cannot
directly affect the integrity of the application stream since MPC
nodes only operate on a copy of the data and cannot alter the
data that is released from the TP’s escrow buffer. On the other
hand, corrupted nodes in the MPC can incorrectly approve
or disapprove release of escrowed data because the TP only
receives instructions to release a certain number of bytes. This
issue is dealt with by using voting on the release instruction,
described in Section 5.

Crashes in the MPC will prevent approval messages from
reaching the TP and will then result in the TP closing the con-
nection to the client. All incoming client connections are routed
through the TP–if the TP were to crash, many client connections
would be terminated. Isolating the possible crashes in the MPC
limits the number of clients affected by any crashes. Watchdogs
help the system recover from crashes and are discussed in
more detail in Section 7.

A single TP would be a single-point-of-failure in the CZ.
This can be addressed by incorporating multiple TPs in the CZ,
deployed in a manner analogous to load balancing. This provides
isolation and replication to this critical part of the CZ. Addition-
ally, in conjunction with the watchdog for the TP, the TPs can be
moved and restarted to provide additional fault tolerance.

5. MPC
The MPC is a metaphor for a loosely coupled set of prox-

ies that perform checks on application data. Figure 3 shows a
detailed version of the MPC, which has a hierarchical structure.
At the bottom of the hierarchy there are individual mechanism
proxies (MPs) implementing check functionality, the next level
up are the proxy groups (PGs), and finally the neighborhoods.

MPs inspect the content of the incoming traffic for attacks.
For example, a rate proxy will raise a flag if the session has an
unusually high message rate. Similarly a size proxy will reject
a message with huge user data. Such proxies are useful for
detecting known attacks, i.e., high message rate leading to
denial of service, and big objects leading to heap overflow. To
protect against novel attacks we utilize MPs that simulate (to
a certain extent) the behavior of the protected service. If the
simulated behavior is close enough to the actual behavior the
effects of the novel attack can then be detected, absorbed, and
managed by the proxy. The Canary proxy is an example based
on this technique. Like the historical canary in a coalmine, a
canary proxy will be affected by the attack in the same way
the protected entity would. Canary is designed to parse the
incoming stream the same way the server would thus protect-
ing the deployed service against attacks that might be caused
by arbitrarily malformed streams or arbitrary attack commands
encoded in serialized data (for example, serialized instances of
Java classes).

PGs represent a coordinated collection of MPs that together
perform checks on application traffic. PGs are associated with
SSL connections; each SSL connection between clients and
TPs will be forwarded (through the slVPG) to a dedicated PG.
This assignment can be controlled at runtime based on avail-

able resources. The proxies within a group coordinate with a
group controller (one controller per group), which regulates the
control flow between the proxies in the group. Intuitively, the
group controller enforces an order of execution on the proxies
for improved protection. For example, to prevent unnecessary
deaths of the canary proxy, we can chain a blacklist proxy, which
screens for instances of known malicious classes, before the
canary. The group controller is also responsible for communicat-
ing with the TP to notify it of the number of bytes cleared by all
of the proxies in the group.

Figure 3: SPA

Neighborhoods represent fault isolation boundaries and are
associated with processes in the current implementation model.
For example, a corrupted MP running in Neighborhood 1 cannot
directly access or spread to other MPs running in Neighborhood
2. A neighborhood can host multiple groups for load balancing
purposes. Neighborhoods can be distributed within the MPC on
different physical hosts and virtual machines.

In most cases, the crash of a canary like proxy also implies
the crash of all components in the same neighborhood. This
means that sessions of all clients sharing the same neighbor-
hood will terminate. However, clients connecting through other
neighborhoods will not be affected and future connections will
go through the remaining neighborhoods.

To address the issue of a malicious MP incorrectly instructing
the TP about escrow release mentioned earlier, one needs to
assign redundant PGs to a single SSL connection and vote on
the group’s release decision. If the PGs are sufficiently indepen-
dent, known fault tolerance schemes can be employed to detect
and tolerate the desired number of corrupt PGs.

6. slVPGs
At a high level, the function performed by the slVPG is to a)

replicate the encrypted stream without losing any application
data, b) share keys so that the receiving end points (RCVRs) in
the MPCs can decrypt and verify the integrity of the replicated
SSL packets, and c) make the decrypted stream available to
the MPs. We explored various implementation options including
libpcap-based packet sniffers [4] to replicate the traffic stream,
and settled on a netfilter-based approach [5] because the latter
provides more robustness against packet loss.

In this approach, as soon as a client connection is initiated,
the splitter component, as shown in Figure 4, starts to buffer
traffic from that connection using a netfilter module. When the
SSL handshake is completed and the PG in a MPC neighbor-

3

CrossTalk—March/April 2011 7

RUGGED SOFTWARE

hood has been initialized to handle the new connection, the Key
Distribution Center at the TP and Key Managers in the neigh-
borhoods communicate to exchange the SSL keys. In parallel,
the splitter starts to forward the buffered data to the RCVRs.
The RCVRs buffer data until the key exchange step is com-
pleted, and make the decrypted data available through stream
interface as soon as the necessary keys are available. Note that
if the client-server messages are signed and encrypted at the
application level, an additional level of key sharing is needed to
make the decrypted data available for inspection and processing
to the proxies.

Figure 4: slVPGs

modifying the firewall to prevent connections from a particular
IP address or by assigning connections from an IP address to a
high-risk neighborhood to further protect other client connec-
tions from potential crashes.

The watchdogs and logging insure that the CZ remains
available, is resilient to attacks, and proactive in preventing or
minimizing the effects of future attacks.

8. Related Work
Port Knocking [6] is similar to SPA, but SPA has the fol-

lowing advantages over Port Knocking: SPA is based on strong
cryptographic ciphers, making spoofing more difficult, SPA
packets are non-replayable, and SPA is robust against trivial
sequence busting attacks.

SPA Implementations take different approaches; we
explored two open-source implementations, Fwknop [7] and
knockknock [8]. These implementations differ in ways that
might impact which one is chosen for a specific deployment. For
packet encoding, Fwknop uses dedicated UDP packets while
Knockknock encodes requests in TCP headers. This implies that
Knockknock requires admin privileges on the client to gener-
ate customer TCP headers. For packet capturing, Fwknop uses
libpcap (a large C library) to passively sniff SPA packets. Knock-
knock reads packet information from kern.log through a daemon
that restricts root privileges to only ~15 lines of Python code.
In our view, this makes the Knockknock daemon less likely to
be subverted. Regarding functionality, Fwknop provides feature
rich support for service ghosting and port randomization, while
Knockknock follows a minimalistic approach.

Web Application Firewalls (WAFs) are designed to
protect J2EE applications and web services (WS) against com-
mon vulnerabilities listed in the OWASP top 10 list, e.g., SQL
injection. While most WAFs are deployed at DMZ boundaries
only and are hosted on hardened appliances, CZs are based on
a lightweight distributed software paradigm that allows us to
surround a selected set of services with fine-grained defenses.
WAFs support only WS-related interaction models and lack sup-
port, for example, for other distributed protocols such as Java
RMI.

Application Server Clustering ensures availability of ser-
vices by transparently rerouting traffic to redundant application
servers in the presence of attacks that affect service availability.
Load-balancers and clusters can work in conjunction with CZ to
implement voting.

XML Appliances provide security through schema valida-
tion, WS-security functions, and assured transformation of
content using standards like XSLT. While there is some similarity
between CZ MPs and functionality provided by XML appliances,
XML appliances are based on a single hardened platform and
don’t provide advanced features such as canary proxies, diverse
proxy implementation, and automatic restart.

Cross Domain Guards mitigate information exchange risks
between different classified networks. New generation SOA-
based guards [9][10] have started separating filter functionality
into services that can be hosted outside of appliances, similar to
the MPC. Compared to the work described here, existing certifi-

7. Recovery Focused Adaptation
The CZ is equipped with adaptation mechanisms that enable

recovery and containment of attack effects. TPs and each MPC
neighborhood have a watchdog that monitors the respective
components and automatically restarts them when a crash is
detected. A restarted component reconnects itself to its peers
and begins handling new client connections. The watchdogs
poll the components in a configurable interval (one second in
our test configuration). Component restart time is dependent on
configuration and load details. In our test configuration, compo-
nents start in less than one second.

The CZ also maintains a database of log messages with
database permissions set so that CZ components can write to
the database (but not read) and only designated analysis com-
ponents can read from the database (but not write). The logging
mechanism collects data that will help the system prevent or
minimize future attacks. For example, each time a check does
something that might cause the neighborhood to crash (such as
checking a serialized object through the canary proxy), it enters
a log message. When it finishes executing the code that may
cause a crash, it enters another log message. These log mes-
sages contain timestamps as well as the IP information about
the connection under analysis.

The log analysis component analyzes the data collected in the
log database. In particular it looks for indications that a particular
client connection caused a crash. For example, a neighborhood
that crashed might have a log message indicating that a block
of potentially-crash-producing code was entered, but was never
exited. The log analyzer can take proactive actions–either by

4

8 CrossTalk—March/April 2011

RUGGED SOFTWARE

cation and accreditation requirements play a more important role
in guards, preventing the use of advanced techniques that don’t
fit current practices, e.g., use of canary proxies and probabilistic
design algorithms.

9. Experimental Validation

Figure 5: Experiment Configurations

Figure 6: Experiment results for multiple client connections

To evaluate the performance and robustness of the current
proof-of-concept prototype CZ, we conducted multiple internal ex-
periments. The system under test consisted of a Java RMI service
and a MPC with four MPs, including rate, size, white list, and canary
checks. Figure 5 shows the base and control conditions used.

We experimented with two categories of client messages:
computation intensive and data intensive. The compute intensive
messages are short but require the JBoss server to perform a
mathematical calculation. The data messages were 1KiB, 10KiB,
and 100KiB in size and required the JBoss server to process the
data. As one might expect, the overhead of the CZ increases as
the messages increase in size. This overhead ranges from 18%
for the computation message to 84%, 803%, and 4040% for
1KiB, 10KiB, and 100KiB data messages respectively.

Our future work includes investigating and optimizing our
code to handle large messages more efficiently. We suspect
that the extra I/O load analyzing the data could be responsible
for the slower processing.

Additionally we investigated server response time when mul-
tiple clients make requests simultaneously. The results for test-
ing one, five, and 10 clients are shown in the box plot in Figure
6. Interestingly, the response times for the CZ improve relative
to the control condition as more clients are added. In fact,
the median response time for the CZ is less than the median
response time for the control condition when 10 clients connect
at once. We believe that this improvement is due to the CZ shar-
ing a connection to the JBoss server for all of the clients versus
a separate connection to the JBoss server for each client in the
control condition. This experiment shows that although there is
overhead for a single client using the CZ this may be mitigated
when multiple clients connect through the CZ.

As shown in Figure 5, all of the CZ functions, including the ter-
mination proxy and the MPC, were hosted on a single host. While
this configuration introduces minimal cost overhead in terms of
additional hardware costs, IO operations on the single machine
will become a choke point given enough load. We plan to investi-
gate other deployments in the future in which MPs are distributed
across a set of machines in a load-balanced way. The expectation
is that load-balanced configuration will decrease round trip times
under heavy loads although increasing hosting costs.

10. Discussion and Next Steps
The CZ design and prototype described in this paper provides

a promising foundation for protecting critical services from
malicious attacks that succeed to a degree, i.e., get past the
traditional access control and authentication services. This
means that the CZ should be effective against novel, zero-day,
and insider attacks.

The degree to which the CZ is effective against a particu-
lar attack depends greatly upon the extent to which the MPC
replicates the server functionality and the kind of cross check-
ing algorithms employed. In the extreme case, the Canary Proxy
would replicate most of the server functionality, and would be
susceptible to, and therefore provide protection against any
attack that would be effective against the service, and the proxy
group-TP processing would be made Byzantine Fault- Toler-
ant. The amount of redundancy and protocol overhead must be
weighed against the perceived threat model. One of the next
steps that we are going to undertake is to evaluate the benefits
and costs of protections and simulated functionality in the MPC,
and how it fits particular threat models and platform perfor-
mance requirements.

Similarly, the current prototype only protects the critical server
from attacks by rogue clients. However, a fully protected system
will want to protect the return path also, i.e., protect a client from

5

CrossTalk—March/April 2011 9

RUGGED SOFTWARE

a server that might have been compromised. To accomplish this,
the return path from the client and server must go through a CZ.
This CZ should be similar to the one on the request path, except
that the functionality simulated by the Canary Proxy will involve
processing of the response.

The current prototype concentrates on protecting server calls
made over RMI. Although this is a valid model, representing calls
made by composed clients and servers, a large class of client-
server interactions in SOA are through WS interchanges, e.g.,
using SOAP. We are currently in the process of designing a CZ
that works with WS interfaces.

Finally, to substantiate our claims that the CZ can protect
against large classes of known, zero-day, novel, and insider at-
tacks, we plan to conduct experiments and collect concrete and
empirical evidence. As we have done in prior research projects
[11], we plan to conduct independent red team exercises to
evaluate the efficacy of the CZ to protect against attacks by
motivated and determined adversaries. In these exercises, an
independent red team, experienced in cyber attacks and with
insider knowledge of the system being protected, but not part
of the development team, will launch attacks against the system.
We will evaluate the ability of the CZ to absorb the attacks and
protect the service, and the extent of the class of attacks that
the CZ is effective against. To the extent possible, we will mea-
sure the difference in time to effectively compromise the system
with and without CZ.

Acknowledgments
The authors would like to acknowledge the support and

collaboration of the US Air Force Research Laboratory (AFRL)
Information Directorate. This material is based upon work sup-
ported by the Air Force Research Laboratory under Contract No.
FA8750-09-C-0216.

Michael Atighetchi is a senior scientist
at BBN’s Information and Knowledge
Technologies business unit. His research
interests include cross-domain information
sharing, security and survivability architec-
tures, and middleware technologies. Mr.
Atighetchi has published more than 35
technical papers in peer-reviewed journals
and conferences, and is a senior member
of the IEEE. He holds a master’s degree
in computer science from University of
Massachusetts at Amherst, and a master’s
degree in IT from the University of Stut-
tgart, Germany.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-1679
Fax: (617) 873-4328
E-mail: matighet@bbn.com

Dr. Partha Pal is a lead scientist at
Raytheon BBN Technologies. He leads the
survivability research thrust of at Raytheon
BBN, and has served as the principal
investigator in a number of DARPA, DHS
and AFRL R&D projects in the areas
survivability and information assurance. He
has published over 65 papers in refereed
journals, conferences and workshops, has
been in the program committees of multiple
workshops and conferences, and has been
a co-organizer of the Recent Advances in
Intrusion Tolerance workshop for the past
two years.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-2056
Fax: (617) 873-4328
E-mail: ppal@bbn.com

ABOUT THE AUTHOR

6

10 CrossTalk—March/April 2011

RUGGED SOFTWARE

Dr. Aaron Adler is a Scientist in BBN’s
Information and Knowledge Technolo-
gies business unit. His research interests
include distributed systems, artificial intel-
ligence, and human computer interaction,
specifically sketch recognition. He has a
Ph.D. in Computer Science from Massa-
chusetts Institute of Technology (2009).

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3517
Fax: (617) 873-2794
E-mail: aadler@bbn.com

Andrew Gronosky is a staff engineer
at Raytheon BBN Technologies. He has
experience developing a variety of software
applications including data analysis and
visualization, digital signal processing, and
parallel and distributed systems. He holds
a Master of Science degree in mathemat-
ics from Rensselaer Polytechnic Institute
and is a member of the IEEE and the ACM.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3517
Fax: (617) 873-3486
E-mail: agronosk@bbn.com

Dr. Fusun Yaman is a Scientist in BBN
Technologies. Her research interests are in
distributed planning, spatio-temporal rea-
soning and machine learning specifically
learning user preferences from observa-
tions. She has a Ph.D. in Computer Science
from University of Maryland at College
Park (2006).

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3966
Fax: (617) 873-2794
E-mail: fyaman@bbn.com

ABOUT THE AUTHORS cont.

Jonathan Webb is an engineer in BBN’s
Information and Knowledge Technologies
business unit. Over 20 years at BBN, Mr. Webb has been
involved in a wide range of software development projects
including simulation of dynamic systems, web based data
management systems, middleware for information man-
agement, and cross domain information sharing.
Mr. Webb has a master’s degree in aeronautics and astro-
nautics from the Massachusetts Institute of Technology.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3321
Fax: (617) 873-4328
E-mail: jwebb@bbn.com

Dr. Joseph Loyall is a principal scientist at Raytheon
BBN Technologies. He has been the principal investiga-
tor for Defense Advanced Research Projects Agency and
AFRL research and development projects in the areas of
information management, distributed middleware, adaptive
applications, and quality of service. He is the author of
over 75 published papers; was the program committee
co-chair for the Distributed Objects and Applications con-
ference (2002, 2005); and has been invited speaker at
several conferences and workshops. Dr. Loyall has a doc-
torate in computer science from the University of Illinois.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-4679
Fax: (617) 873-4328
E-mail: jloyall@bbn.com

Asher Sinclair is a Program Manager at AFRL’s Informa-
tion Directorate working in the Enterprise Information
Management Branch at the Rome Research Site.
His work history includes enterprise systems manage-
ment, service-oriented architectures, information-level
quality of service, and network security.
He has contributed to more than 12 technical papers and
conference proceeding publications. He holds a bachelor’s
degree in Computer Information Systems from the State
University of New York and a master’s degree in Informa-
tion Management from Syracuse University.

AFRL
525 Brooks Road
Rome, NY 13441
Phone: (315) 330-1575
E-mail: asher.sinclair@rl.af.mil

7

CrossTalk—March/April 2011 11

RUGGED SOFTWARE

1.	 Michael Atighetchi, Partha Pal Andrew Gronosky, “Understanding the Vulnerabilities of a SOA
	 Platform - A Case Study,” in The 9th IEEE International Symposium on Network Computing
	 and Applications (IEEE NCA10) , Cambridge, MA USA, 2010.
2.	 Eric Rescorla, SSL and TLS: Designing and Building Secure Systems. United States:
	 Addison-Wesley Pub Co., 2001.
3.	 Michael Rash. (2006) Single Packet Authorization with Fwknop. [Online].
	 <http://www.cipherdyne.org/fwknop/docs/SPA.html>
4.	 (2010, September) TCPDUMP home page. [Online]. <http://www.tcpdump.org/>
5.	 (2010, September) Netfilter Homepage. [Online]. <http://www.netfilter.org/>
6.	 Martin Krzywinski. (2005) portknocking.org.
	 [Online]. <http://www.portknocking.org/docs/portknocking_an_introduction.pdf>
7.	 CipherDyne. (2010, September) CipherDyne. [Online]. <http://www.cipherdyne.org/fwknop/>
8.	 Moxie Marlinspike. (2010, September) KnockKnock.
	 [Online]. <http://www.thoughtcrime.org/software/knockknock/>
9.	 Jason Ostermann. (2009) Presentation at UCDOM Annual Conference: Raytheon DSCDS Intro.
	 [Online]. <http://www.ucdmo.gov/conference09/Ostermann_Raytheon%20
	 DSCDS_09022009.pdf>
10.	BAH. (2009) Presentation at the UCDMO Annual Conference: BAH DSCDS Overview.
	 [Online]. <http://www.ucdmo.gov/conference09/Morris_BAH%20DSCDSoverview_
	 final_09022009.pdf>
11.	Joe Loyall Michael Atighetchi, “Meaningful and Flexible Survivability Assessments:
	 Approach and Practice,” in CrossTalk - The Journal Of Defense Software Engineering,
	 March/April 2010, pp. 12-18.

REFERENCESABOUT THE AUTHORS cont.

Charles Payne is a Member of the Technical
Staff at Adventium Labs in Minneapolis, Min-
nesota. He has been a Principal Investigator
for the Office of Naval Research in the area
of virtualized cross domain support and has
been a key contributor to DARPA, DHS and
AFRL programs investigating high assurance
security architectures. He has published more
than a dozen papers and served as Program
Chair for the Annual Computer Security Ap-
plications Conference (2009). Mr. Payne has
a Masters of Science degree in Computer
Science from The College of William and Mary
in Virginia.

Adventium Labs
111 Third Avenue South, Suite 100
Minneapolis, MN 55401
Phone: (612) 817 2525
E-mail: charles.payne@adventiumlabs.org

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Protecting Against Predatory Practices
September/October 2011

Submission Deadline: April 8, 2011

Software’s Greatest Hits and Misses
November/December 2011

Submission Deadline: June 10, 2011

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

8

